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Abstract-A two-dimensional boundary element formulation. which does not require domain
discretization and allows a single-region analysis. is presented for transient thermoelastic crack
problems. The formulation is based on the dual boundary element method; temperature and
displacement equations are used on one crack surface. flux and traction equations on the other.
Time is modelled with linear time elements. Stress intensity factors are calculated using the path
independent i-integral. Several crack problems are solved and the results are compared. where
possible. with existing solutions. Copyright (g 1996 Elsevier Science Ltd.

INTRODUCTION

Under certain conditions thermal and mechanical loads can lead to the fracture of engin­
eering components. In sensitive equipment such as pressure vessels, the fracture of a
component, due to sudden cooling, say, can lead to complete failure. The possibility of a
crack-induced failure following thermal shock can be assessed by calculating the thermal
stress intensity factors for the cracked component. This paper presents a numerical tech­
nique for the accurate calculation of stress intensity factors as a function of time for
uncoupled transient thermoelastic problems.

Analytical results for transient thermal problems exist for only a few cracked con­
figurations. Numerical methods like the finite element method (FEM) and the boundary
element method (BEM) are the most popular techniques used for the analysis of transient
problems. Many papers have been published on the use of the finite element method (e.g.
Emmel and Stamm, 1985; Emery et aI., 1977; Hellen et al., 1982). However, the boundary
element method offers many advantages, for example boundary only discretization and
simple modelling for crack growth studies.

Uncoupled transient thermoelasticity has been the subject of many investigations with
a boundary element method of analysis. For instance, Tanaka et al. (1984a) implemented
a volume based thermal body approach. However volume discretization removes some of
the advantages of the standard BEM. Sladek and Sladek (1989, 1992) presented a series of
papers on coupled thermoelasticity which included a time-domain method. The initial time­
domain boundary integral equations were presented in a boundary only formulation, but
the primary variables included time derivatives. Sladek and Sladek (1989) later presented
a boundary integral formulation in terms of regular primary variables; they used inverse
Laplace transforms on their previous equations. Their work was later summarized in Sladek
and Sladek (1992). The same equations were obtained by Dargush and Banerjee (1989)
who used the reciprocal theorem ofIonescu-Cazimir (1964). Sladek et al. (1989) presented
fundamental solutions of displacement and traction only and their time integrations.
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The literature on applications of thermoelasticity to crack problems is limited (Tanaka
et al., (l984b), Shidek et al. (l992), Raveendra and Banerjee (1992)). All the early solutions
of crack problems were restricted to symmetric problems, so as to avoid collocating on
both crack surfaces which leads to singular matrices. Tanaka et at. (l984b) applied a
subregions technique, developed by Blandford et al. (l98l) for fracture problems which
involved domain discretization. Raveendra et at. (l992) also used a subregion technique to
solve crack problems using a boundary only formulation.

Portela et al. (l992) presented a formulation called the dual boundary element method
(DBEM) which facilitates the analysis of arbitrary crack problems in a single region. They
overcame the problem of singularities in the final system of equations by using different
equations on the two crack surfaces. They collocated using a displacement equation on one
crack face and a traction equation on the opposite face. This method was later extended to
steady-state thermoelasticity by Prasad et at. (l994a).

In this paper a boundary formulation of uncoupled transient thermoelasticity is
implemented for crack problems, which makes use of the dual boundary element method.
The advantage of the boundary formulation is that it removes the necessity of any domain
discretization. The advantage in using DBEM is that the domain does not have to be
sectioned along an artificial boundary. Thus, DBEM simplifies the modelling of crack
propagation also. In the current formulation, temperature and displacement boundary
integral equations are applied on one crack surface, and flux and traction equations are
applied on the opposite surface. Boundary and internal formulations for all the four
equations are presented. Time integration is done using constant and linear time steps.
Accurate values of stre~s intensity factors are obtained from the i-integral. Two example
problems are presented and the results are compared to existing work where available.

DUAL BOUNDARY ELEMENT METHOD

Consider a linear, elastic, isotropic and homogeneous body occupying a domain
Q enclosed by a boundary r. The governing sets of equations for uncoupled transient
thermoelasticity are the diffusion equation and the equations of elasticity. The equations
can be expressed as follows:

and

I .
()--()=o

,)) K
(l)

(2)

where () is the temperature, u, is the displacement component, /l is the shear modulus, v is
Poisson's ratio, a is the coefficient of linear expansion and K is the diffusivity (see Appendix
A). In the above equations, a subscript i preceded by a comma represents differentiation
with respect to the ith spatial coordinate in the Cartesian system; repeated indices imply
summation; and the dot over () represents differentiation with respect to the time r.

The differential eqn (1) is solved subject to initial temperature conditions in Q and
temperature and flux boundary conditions on r e and rq respectively. The flux q is defined
by q = - J.(),m where n preceded by a comma represents differentiation with respect to the
outward normal. The differential eqn (2) requires displacement and traction boundary
conditions on r u and r, respectively. The traction t, is defined by t, = (Junj' where (Ju is the
stress tensor and nj is the normal vector,
For eqn (l):

initialconditions(r = ro) ()(X,r) = ()(X,ro)whereXEQ;

boundary conditions ()(x, r) = 8(x, r) wherexEro



For eqn (2):

and
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q(x,r) = q(x,r) wherexE rq .

2697

(3)

boundary conditions uj(x) = ilj(x) where x E r"
and t;(x) = tj(x) where x E r, (4)

where X represents an internal point and x represents a boundary point.
The standard temperature equation for an interior point X' at time rEcan be generated

from weighted residual statements, as shown in El-Zafrany (1993) and Brebbial et al.
(1984); namely

8(X', rE) - tf' 8(x, r)Q(X', x, rE, r) dr dr(x)

= - r IT
F

q(x,T)0(X',X,TE,T) dTdr(x) +1 8(X,To)0(X',X,TE,To)dQ(X), (5)Jr T" n

where the fundamental solution 0 is the solution of the following equation (Carslaw and
Jaeger, 1959);

(6)

In the above equation <5 (X' , X) is the Dirac delta function with the following properties:

f(X') = Lf(X) <5 (X', X) dX. (7)

In eqn (5), Q can be obtained from 0 by using the flux-temperature relationship. As the
initial temperature 8(X, To) satisfies the steady state equation, then the domain integral in
eqn (5) can be converted into boundary integrals (EI-Zafrany, 1993). The resulting bound­
ary integral equation is

8(X', TF) -8(X', To) - t fF 8(x, T)Q(X',X, TF, T) dTdr(x)

= -1 IT
F

q(x,T)0(X',x,TF,T)dTdr(x)
r To

-t {8(x,tJQO(X',x,TF,To)-q(x,t,,)0°(X',x,TF,To)}dr(x), (8)

where the term 8(X', To) comes from the conversion of the domain integral to a boundary
integral. The last two integrals also come from the conversion of the domain integral, due
to the initial temperature, to boundary integrals; 0° and QO are given in Appendix A.

The displacement boundary integral equation for an internal point X' can be obtained
either by use of Laplace transformations as Shidek and Sladek (1992), or by using the
reciprocal theorem Dargush and Banerjee (1989). The result is
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Ui(X',TF)+ r Tu(X',x)U;(x,TF) dr(x) + r rtF Fi(X',x,TF,T)8(x,T)drdr(x)
Jr JrJrv

= r Vu(X',x)t;(x, TF) dr(x) + r rTF Gi(X', x, rp, r)q(x, r) drdr(x) (9)
Jr Jr J10

where Vu is the displacement fundamental solution due to unit line load and Gi is the
displacement fundamental solution due to a unit heat flow applied at r o ; the functions Tij
and F i are the traction and flux fundamental solutions; they can be obtained by applying
the constitutive law on Vij and Gi •

Temperature andfiux equations
Temperature equations for a boundary point x' can be obtained by moving the internal

point in eqn (8) to the boundary. The temperature equation for a point x' is

c(x')(e(x', r F) - e(x', ro)) - r rTF e(x, r)Q(x', x, rp, r) dr dr(x)
Jr Jro

= - r rTF q(x, r)E>(x', x, rF, r) dr dr(x)
Jr Jlo

-L{e(x, ro)QO(x', x, rF, ro) -q(x, ro)W(x', x, rF, ro)} dr(x), (10)

where Sr represents the Cauchy principal value integral; and c(x') depends on the position
of the point x' on the boundary. The function c(x') multiplying the temperature at time rF
comes from the spatial integrals of E> and Q after a time integration. Similarly, the function
c(x') multiplying the temperature at time r o comes from the spatial integrals of E>0 and QO.
After the time integration of the E> and Q integrals in eqn (10), the resulting terms
have O(ln r) and O(ljr) spatial singularities, respectively, the same as in the steady state
temperature equation (where r = lx' -xl).

If the point x; is on one of the crack surfaces, and x;: is the point on the opposite crack
surface with the same coordinates as x;, then the temperature equation for x; is

c(x;.)(e(x;., rF) - e(x;, ro)) +c(x;) (e(x:, rF) - e(x:, ro))

-LfF e(x, r)Q(x;., x, r F, r) dr dr(x) = - LfF q(x, r)E>(x;., x, r F, r) dr dr(x)

-L{e(x,ro)QO(x;.,x,rF,r,,}-q(x, ro)W(x;., x, rF,ro )} dr(x) (II)

If the crack surface is smooth at x;, then c(x;.) = c(x;) = (I j2).
The equation for temperature derivatives at an internal point X' can be obtained by

differentiating eqn (8) with respect to X' to give the following equation:

1iTF aE>(X',X,rF,r)
= - q(x, r) aX' dr dr(x)

r to I

-1 {e( )cQO(X',x,rr,ro ) _ ( )aE>0(X1,x,TF,rO)}dr()
x, To ax~ q x, r o ax' x

r I l

(12)
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The singularity orders of the coefficients of eand q in the integrals can be obtained after
time integration. The orders of singularities can be seen to be the same as in the steady
state flux equation, that is 0(1jr 2

) and O(1/r) for temperature and flux coefficients, respec­
tively. When the collocation point is taken to a smooth boundary at x', the derivatives of
the fundamental solutions can be expanded in a Taylor's series and the following relations
obtained (Appendix C) :

. 1{f'FaQ(X',x,ThT) }
l~m ~ , e(x, T) dT dr(x)
x~x ox.r Til I

. r {f'Fae(X',X,TF,T) }
}PE· Jr '" ax;' q(x, T) dT dr(x)

= - eiX',TF) 1{fTFae(X',X,TF,T) ( . )d }dr( )4 + a ' q x, T T X .
r Co XI

(14)

Notice that since q = - 2e.knk in eqn (14) and nk depends on x, only e.k can be brought
outside the integral during the calculation of the singular integraL In the above equations
of represents the Hadamard principal value integral and t represents the Cauchy principal
value integraL Jump terms for the integrals of the initial conditions in eqn (12) can be
calculated in a similar way. The temperature derivative equation for a point on a smooth
boundary can now be written as follows:

(
~ ae(X',TF) ~ ae(X',To)) f fTF() 3Q(X',X,TF,T)
2 a' - 2 a' - u(x, T) a ' dTdr(x)

Xl x/ [' To X,

1f

TF ae(x', x, TF, T)
= - q(x, T) a ~ dT dr(x)

r ~ x,
'"

[f aQO(X',X,TF,To) 1 aeO(x',x, TF' TJ l
- e(x, TJ a ' dr(x) - q(x, To) ~ , dr(x) .

r x, r ox,
(15)

Temperature derivatives for a point x; on a smooth crack surface are related to those for
the equivalent point x;' on the opposite crack surface as follows:

[f f) ) 3QO(x;.,x.' TF,T o ) 1 3EF(x;., x, TF, To) l
- u(x, To a ' dr(x) - q(x, TJ a ' dr(x) .

r x, r Xi
(16)

The flux equation for the point x; can be obtained from the relationship between flux and
temperature derivatives and is as follows:
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~(q(x;., rF) -q(x;, ro)) -~(q(x~, rF) -q(x~, ro))

+nj(x;) 1 reF Qj(x;., x, rh r)8(x, r) dr dr(x)
Jr J.u

= ni(X;') 1 reF 8 i(x;., x, "F, r)q(x, r) dr dr(x)
Jr Jeo

+nj(x;)[£ Qf(x;, x, "F, rJ8(x, ro) dr(x) - f, 8f(x;, x, "F, ro)q(x, ro) dr(x)J (17)

where the condition nj(x;.) = -ni(x~) IS used and Qi' 8j, Qf and 8f are given in
Appendix A.

Displacement and traction equations
The displacement equation for a collocation point x' can be obtained by taking the

internal point X' to the boundary. Of the four integrands in the displacement eqn (9), UIj
and Fj, after the time integration, are weakly singular of D(ln r) ; Gi after time integration
is not singular; and TIj is strongly singular of O(1/r). The singularity in TIj gives a jump
term at x'. Thus the displacement equation for the boundary point x' is given by

= rUij(x', x)tj(x, rF ) dr(x) + r reF Gi(x',x,rF, r)q(x, r)drdr(x), (18)
Jr Jr JTo

where clj depends on the position of x'. If x; is a point on a crack surface, and x~ is the
corresponding point on the opposite crack surface, the displacement equation is

= r Uij(x;.,x)tJx,rF) dr(x) + r reF Gi(x;.,x,rF,r)q(x, r) drdr(x), (19)
Jr Jr JTo

where clj(x;.) = cij(x;:) = ~6ij for a smooth surface.
Traction equations are obtained by substituting the derivatives, with respect to X', of

the displacement eqn (9), in the constitutive law. Derivatives of the displacement are given
by the following:

(20)

By combining the above eqn (20) with the constitutive law in thermoelasticity, that is
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the stress equation for an interior point X' can be written as follows:
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(21)

= i Ukij(X',X)tk(X,LF)dr(x)+i rTF Gij(X',x,LF,L)q(x,L)dLdr(x), (22)
r r JTo

where Tkij, Ukij, Fij and Uij are given in Appendix A. In the stress equation Tkij is hyp­
ersingular of 0(1/r2); Ukij and the time-integrated Fij are strongly singular of O(1/r) ; and
GIj after time integration is weakly singular of O(ln r). In elastostatics, it can be shown (see
Cruse, 1977) that the summation of the singularities of the kernels of Tklj and Uklj gives
- (J(x')/2, when the collocation point is taken to a smooth boundary. In transient
thermoelasticity the singularities can be shown to be (Appendix C),

li~. {t Tkij(X', X)Uk(X, LF) dr(x) - t Ukij(X', x)tk(x, LF) dr(X)}

= £Tklj(x', X)Uk(X, LF) dr(x) - £Uklj(x', x)tk(x, LF) dr(x)

(J1j(x', LF) fl(1 +v)a, fl(1 +v)a ,
- 2 - (1- 2v) e(x, LF)i5ij + 2(1- v)(1- 2v) e(x ,LF)i5ij (23)

and

(24)

After substituting the above two equations in eqn (22), the following equation for the stress
at a smooth boundary point x', is obtained

The stress equation for a point x~ on a smooth crack surface and the corresponding point
x~ on the opposite crack surface is as follows:
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The traction equation for a point x; is obtained by multiplying eqn (26) by the normal
nj(x;) and using nj(x;.) = - nj(x;') ; it is

+nj(x;)[f r'F FijC,<,x,rF,r)e(x, r) drdr(x)
r Jro

fl(l +v):xr' " ]+ (I-2v) l8(x n r F)+8(xn r F )}15ij

= ni(x;{£Ukij(X;., x)tk(x, rF) dr(x) +t fF Gij(x;, x, rF' r)q(x, r) drdr(x)J (27)

NUMERICAL IMPLEMENTATION

The numerical implementation for crack problems in transient thermoelasticity
requires both time integration and space integration. In the present implementation of the
method analytical integration ofthe time integrals is done first. The order of the singularities
of the kernel functions can be seen after the integration over time. The order of the
singularities in the kernels of both the thermal equations and the elastic equations are the
same as in steady state thermoelasticity (Prasad et al., 1994a).

In this section the modelling strategy of the dual boundary element method is used,
and discretization of the boundary integral equations is discussed. The procedures for
analytical integration of the time integrals and numerical integration of the singular and
nonsingular spatial integrals are presented.

Modelling strategy
As stated earlier the dual boundary element method is used to model the transient

thermoelastic crack problems considered here. This formulation removes the problem of a
singular matrix system that would have arisen in the final system of equations if the same
set ofequations were used on both crack faces. The two sets ofequations for thermoelasticity
are for temperature and displacement, and for flux and traction, as detailed in previous
sections. The traction and the flux equations contain hypersingular integrands, which arise
from the coefficients of displacement and temperature; they are of O(llr2

). Therefore the
displacement and temperature themselves need to have a higher order continuity at the
collocation points (nodes) than the strongly singular coefficients. This is achieved in the
DBEM by using straight, quadratic discontinuous elements where hypersingular equations
are applied. The modelling strategy is the same as in steady state thermoelasticity as shown
in Prasad et al. (l994a) and can be summarized as follows:

-Temperature and displacement equations are collocated on one crack surface and
flux and traction equations are collocated on the other. Since the displacement and
temperature in the traction and flux equations require higher order continuity at
the singular points, crack boundaries are modelled with discontinuous quadratic



Transient thermoelastic crack problems 2703

elements. Nodes on the discontinuous elements are at 1/6, 1/2 and 5/6 of the element
length.

-Temperature and displacement equations are used for collocation at all boundary
points that are not on the crack. Continuous quadratic elements are used along the
non-crack boundary, except at the intersection between a crack and an edge where
a discontinuous element is used.

Discretization
In all the collocations of the temperature, flux, displacement and traction boundary

integral equations, the time integration of the kernels is done before the spatial integration.
The temperature eqn (10) is discretized as follows:

where N a and M b are spatial and temporal shape functions respectively. Superscripts a
and b represent the spatial and temporal node numbers in each element. In the present
implementation quadratic elements are used to model spatial boundary variables (a = 1,2,
3) and linear (b = 1,2) time interpolation is used to model the time domain. The boundary
of the domain r is divided into N elements and the time domain is divided into F equal
time steps.

Discretization of the flux eqn (17) is similar to that for the temperature equation: the
discretized equation for a point x; on the crack surface is

~(q(x;., TF) - q(x;., To» -~(q(x;~, T1') - q(x;~, To»

+ni(x;) t [r Na{t rTf MbQidT}drJeabnl
n-l Jrn 1-1 J<f-l

= n;(x~) t [r N aSt fT! MbGidT} drJqabnl
n-l Jrn (;- I ~/-l

+n;(x;.) JI [{Ln N°m dr}ean(x, To) - {L" NaG: dr}qan(x, To)J (29)

Similarly, the discretization of the displacement and traction eqns (18, 27) are as
follows:

and
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(31 )

In the above discretization of the boundary integral equations, different integrals can
have different numbers of spatial and temporal points (nodes).

Time integration
In the present study all the time integrations of the boundary integral equations are

evaluated analytically. Both constant and linear time interpolations are incorporated in the
computer program. Linear time interpolations must be used for the time integration of the
flux boundary integral equation, as the error in modelling using constant time interpolation
is large (Prasad et al., 1994b).

It can be seen from the fundamental solutions in Appendix A that the primary time
variable is (r1'-r) where r 1' is the time at which the results are required, and r is the
integration variable which varies from r o to r1'. For the temporal integration the time
(r1'-ro) is divided into Ftime steps of Ar each (r1' = ro+FAr).

For linear time interpolation, the temporal shape functions are given by

b = I

and

b = 2 and

where rj- rj_l = Ar and rj-l ~ r ~ rr
To calculate the unknown boundary values at rF , the boundary values at all the

previous times (r!, f = I, F - I) must be known. Since the time is divided into equal time
steps of Ar, only one new set of matrices needs to be calculated in order to obtain results
at r1'; the matrices calculated at all the previous time steps are used again. To solve the final
system of equations arising from the boundary integral equations, "LV" decomposition of
the matrix (lower and upper) is used. By using this kind of solver, the decomposition need
be done only once and the same matrix can be used at all the time steps.

The following is a typical example of the time progression scheme for the temperature
(28) at time t1' :

c(x')(e(X',r1')-e(X',ro))-J! [Ln N° 1~_, MbQ(x', X, rr,r) drdrJe
Ohfl1'

= - t [r N° rTF M h8(X"X,r1',r)drdrJqOhfl1'
n-l Jrn JTF-l

+ fit! [{L" N°Qo dr }e
Ofl

- {L" N°W dr }qoflJ
+ ±II [r N° r'f MbQ(x', x, r1', r) dr drJeobflj

n= 1 f= 1 Jrn Jrr_l

-ntIJ: [L" N° t~, M
b
8(x',x,r1',r)drdrJOhO!. (32)
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The above kernels, after time integration, are given in Appendix B.
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Spatial integration
The order of the singularities in the boundary integral equations is summarized in

Table 1.
In the present implementation, regular Gaussian quadrature is used when the col­

location point is not part of an element (that is, r #- 0 anywhere on the element). If the
collocation point is on the element being integrated (r = 0 at that point), different evaluation
techniques are used depending on the order of singularity and the type of element.

For the temperature boundary integral equation, the kernels of the temperature and
flux are weakly singular as in the steady-state temperature equation. For the collocation
point itself, it is not possible to calculate the coefficient ofthe temperature in the temperature
equation, from rigid body motion, as in the steady-state case. The coefficient of temperature
is therefore calculated exactly using the method proposed by Aliabadi and Hall (1989). The
kernel of the flux is of O(ln r) and the integral is calculated by using a mixture of regular
Gaussian quadrature and logarithmic Gaussian quadrature (Aliabadi and Rooke, 1991).

The flux equation is used for collocation points (nodes) on just one of the crack
surfaces. Since, all the crack elements are straight and discontinuous, the continuity required
by the hypersingular flux equation at singular points is automatically satisfied. Coefficients
of the flux and temperature for the singular element are calculated by analytical integration.
It can be seen from Appendix B that there are singular and nonsingular parts in the
coefficients after time integration. The nonsingular parts are calculated with regular Gauss
quadrature. There are two integrals to consider, one hypersingular (the coefficient of
temperature) and one strongly singular (the coefficient afflux): they are

and (33)

If the global coordinates are converted to local coordinates, the following relationships
hold:

and

(~-nl
r=

2
I y

dr = -d<;
2

where (34)

Table I. Order of singularities in the boundary integral equations

Temperature eqn

Flux eqn

Displacement eqn

Traction eqn

temperature

r'

Inr

Coefficients of
flux displacement

Inr

not singular

lnr

traction

Inr
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I is the length of the element, ~ is the local coordinate of the element (-1 :( ~ :( + 1) and
~' is the local coordinate of the collocation point. Substitution of the above relations allows
the singular integrals to be written as follows:

2 f+ I e-{i(~-02 f+ 1 e-{i(~-02

I Na , 2 d~ and N" (J:_ V') d~.
-I (~-O -1 <" t;'

The shape functions N a can be factorized as

(35)

(36)

After substitution of the shape functions, the strongly singular integral can be written as

fl fl fl e-{i(~-02
=Aa (~_Oe-fi(~-02d~+Ba e-{i(~-02d~+ca "' d~;

-I -I -I (t;'-~)

and the hypersingular integral as

(37)

(38)

The nonsingular integrals can be calculated numerically, and the singular terms ana­
lytically as follows:

and

f
l e-{i(~-02 [e-{i(1 -0

2
e-{i(1 +02

J
fl .2

d
y

- + 2[3 -{i(~-n d"
_I -(~-_-~-')-2 c;; - - (1-0 (1 +0 - -I e t;',

(39)

(40)

where the exponential integral is defined as £1 (x) = S:'(e-'Is) ds.
In both the displacement equation and the traction equation, the coefficients of dis­

placement and traction are the same as in elastostatics (Portela et al., 1992) and steady­
state thermoelasticity (Prasad et al., 1994a), and are evaluated in the same way.

In the displacement equation the coefficient offlux is not singular, so it can be calculated
using regular Gauss quadrature; the coefficient of temperature is singular of O(ln r) and is
calculated as before. In the traction equation, the coefficient of flux is also of OOn r)
singular; the coefficient of temperature is of O(1lr), and is evaluated from (37).

In the evaluation of the singularities in the kernels it should be observed that:



e

Transient thermoelastic crack problems

Actual temperature

Modelled temperature

/
/

/

2707

I
I 1'"

Time
1'"

f=1 f=2

and

Fig. I. Thermal shock modelling for linear time integration.

lim {E 1 (x)} = O(lnx) .
.\----JoO

In the present work, the thermal and the elastic equations are solved together as shown
by Prasad et al., (1994a). This procedure is also convenient for modelling physically coupled
problems because both thermal and elastic problems can be solved simultaneously. The
two equations at time 'F can be written together in matrix form as follows:

H (u,t)
12

H (u,t)
22

o

[G
Cu.l)
11

- GCU,I)
- 12

o

G
CU,I)
12

G (U,I)
22

o
(41)

If the initial conditions are not homogeneous, there will be additional terms. Superscripts
(u, t) mean that the Hand G coefficients belong to either displacement and temperature
equations, or traction and flux equations, depending on the location of the collocation
point. ()! and q for f < F are known values. The matrices [mIJ·t)J] and [G~~·t)J] (where i = 1,
2, ()) for f > 2 have been calculated and stored from previous time steps. If the problem
and number of time steps are large the storage space required can be quite substantial. The
results for single and double precision calculations are very close for initial time steps but
as the number of time steps increase the errors for single precision increase. So, double
precision calculations are used in the numerical implementations reported here.

If the problem being modelled is a thermal shock problem (a sudden rise in tem­
perature) the flux is infinite at the boundary where the thermal shock is applied. This is a
problem if the time interpolation is linear. This difficulty is overcome in the present study
by approximating the first step as a linear increase in temperature (Zienkiewicz, 1989), as
shown in Fig. 1.

CALCULATION OF STRESS INTENSITY FACTORS

The magnitude of the stress intensity factor is a measure of the severity of the crack in
both dynamic and static problems. There are many methods of calculating stress intensity
factors; one of the most accurate ways is via the path independent i-integral (Aliabadi and
Rooke, 1991). In the present work the i-integral for thermal and mechanical conditions,
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defined by Kishimoto et at. (1980), is used to calculate the stress intensity factors K1 and
KII. It is given by

(42)

where

(43)

We is the elastic strain energy; E' = E for plane stress conditions and E' = E/(1- v2
) for

plane strain conditions; S is the i integral contour and A is the area enclosed by the
contour. The elastic strain energy We is given by

(44)

The method of evaluation of the i-integral in transient thermoelasticity is the same as
in steady-state thermoelasticity (Prasad et at., 1994a). The contour integral is evaluated
around a circular path from any node on the crack surface to the node on the opposite
crack surface, with the crack tip as centre. The circular path is divided into linear segments
and the region inside the circle is divided into triangular segments; each triangle has an
apex at the crack tip and the other two are on the circular path. The surface integral and
domain integral can be calculated with Gauss quadrature. Care must be taken in the
evaluation of the domain integral as stresses are singular at the crack tip. The singularity
of the stress can be eliminated by transforming the triangular segments to square segments
as shown in Aliabadi and Rooke (1991). The Jacobian of this transformation cancels the
weak singularity of the stress, and regular Gauss quadrature can then be used over the
transformed square region.

In eqn (43) K1 and KII are coupled; they can be uncoupled, to symmetric and unsym­
metric components, as shown by Portela et at. (1992) and Prasad et at. (1994a). The
uncoupled K 1 and KII can then be calculated as follows,

where

(45)

The uncoupled terms i~ and if can be calculated by the substitution of symmetric and
antisymmetric components respectively, into eqn (42).

The calculation of i-integrals requires the evaluation of internal values at the Gauss
points of the linear segment of the contour and the triangular segment of the domain. The
internal values required are of stress, strain, temperature and derivatives of displacement
and temperature. The interior boundary integral formulations for these internal values are
given in the previous sections. In transient thermoelasticity, these internal values are
required at all the time steps. Since the time step (fn) is constant, calculation of the values
at the current time step can be expressed in terms of matrices of previous steps. The storage
of these matrices requires considerable computer space even when only the necessary
internal values are calculated at each internal point. It should be noted that multiple crack
problems would require additional storage as the internal point locations are different.
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NUMERICAL RESULTS

Numerical results for three crack problems with transient thermal boundary conditions
are presented in this section. The stress intensity factors were calculated from i-integrals
on different circular paths; each path is referred to by a path number. The number is the
crack node number where the path starts. The node numbers increase, counting from unity
at the crack tip. Path independence was checked and all the results quoted refer to path 5.

All the examples analyzed have the same material properties: Young's modulus
E = 2.184' 10-5 Pa; Poisson's ratio v = 0.3; the coefficient of linear expansion
a = 1.67· 10- 5 per cC and the coefficient of diffusion K = 1.0 m2js. The variation of the
stress intensity factors with time is presented in non-dimensional form. All the problems
are solved in plain strain conditions.

Rectangular plate with a central crack
A rectangular plate of width 2W, length 2L and a central crack of length 2a is shown

in Fig. 2a. This configuration with Lj W = 1.0 is solved for two different sets of boundary
conditions representing pure mode I and pure mode II respectively. The results are com­
pared with the finite element results calculated by Emmel and Stamm (1985). Initial
conditions for both boundary condition sets are zero temperature and zero flux.

1. Boundary condition I (Pure mode I)
8(T) = 0 on the crack
8(T ): 0) = 8, around the boundary

2. Boundary condition II (Pure mode II)
q(T) = 0 on the crack
q(T) = 0, X = ±W, Iyl < L
8(T): 0) = ±8 j , Ixl :( W, y = ±L

Because of symmetry only half the problem needs to be considered. That is, since q = 0
along the line x = 0 for both boundary condition sets, the problem can be modelled as in
Fig. 2b. The geometry is modelled using 34 quadratic elements with six elements on each
crack surface. Both sets of boundary conditions represent a problem of thermal shock.

When 8, = 1°C and ajW = 0.5 the results obtained can be compared with those of
Emmel and Stamm (1985). It can be seen from Fig. 3 that the present boundary element
results compare well with the finite element results. The size of the time step has little effect
on the result after the first few time steps in the case of linear time interpolation. For
constant interpolation, results differ for longer time. So, in all the subsequent calculations
only linear time interpolation is used. In Fig. 4 values of K[ for various ajW are shown.
The stress intensity factors in Figs 3, 4 and 5 are normalized with a factor of
F= a(8])E(W)05. Time is normalized as Y = KTjW2

• Results are shown for three different

y

8(T=O) = 0

/,,;;;,
~ 2L " ~

. 2W

x x

(a) Complete plate (b) Numerical model

Fig. 2. Rectangular plate with center crack.
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0.2 0.3 0.4 0.5 0.6
Normalized time (T = ICT/W2

)

Fig. 3. Comparison of results between different time steps.

2710

0.6

0.5 .( ~
~ 0.4
't:l
Q)

.~ i<;
S 0.3...
0
Z

0.2

O·b .0 0.1

••••• Emmel et ai., a/W=0.5
~ tJ.T=0.02, a!W=0.25
~ tJ.T=O.Ol, a!W=0.5
H+H tJ.T=O.Ol, a!W=0.75
-- Steady-state results.

0.6

0.5

~

't:l 0.4
Q)

~
ol

S... 0.30
Z

0.2

0.2 0.3 0.4 0.5
Normalized time (T = ICT/w")

Fig. 4. Normalized K, values for different ratios of a/ W of center crack.

0.35 r------------------:~::::;;:::::H=F'F1rl

0.30

••••• Emmel et ai., a/W=0.5
~ flT=0.025, a/W=0.25
~ flT=0.04, a/W=0.5
H+H flT=0.04, a!W=0.75

Steady-state results

-0.00

-0.05

,,0.25
~

al 0.20 r---------;;,J!L-----::::::;;:::;;;:::==;=>f=-=----......-....---..--::j
N

~0.15
S
2; 0.10
Z r--#------=--;;:;:;::<~_-..........................-e-<>-<>-<>-<>-e--EHe-<>-e.--------=1

0.05

- 0.1 0 ~_"_L..L.L'___'__'--'--'-..L.L'___'__'__LL..L.L'___'__'__LL..L.L'___'__'__LL-'--'--LLi__'__'_-'--'--'_'_'__'__'_-'--'--'_'_'__'__'_.w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Normalized time (T = ICT /w")

Fig. 5. Normalized K" values for different ratios of a/ W of center crack.

crack lengths. Again the results compare well with those of Emmel and Stamm (1985) for
a/W = 0.5. It can be seen that the transient results tend to the steady state values.

The values for K ll start negative and become positive. This is because the effect of
temperature on the crack is minimal initially, but it increases with time. If the temperature
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Fig. 6. Rectangular plate with an inclined crack.
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Fig. 7. Normalized K, values for inclined crack.

on the top edge (y = H) is +8] and on the bottom edge (y = - H) is - 8] the final Kll is
negative as the top crack face expands and the bottom face contracts. However, initially
the effect is the opposite, similar to a pure mode II problem with mechanical boundary
conditions.

Rectangular plate with an inclined crack
A rectangular plate of width 2W, length 2L with a center crack of length 2a at an angle

w is shown in Fig. 6. The configuration with L/W = 1.0 and a/W = 0.2 is solved for one
set of boundary conditions which gives mixed mode behavior. Initial boundary conditions
are zero temperature and zero flux. The temperature boundary conditions are 8] on the
outer boundary and 82 on the crack. The geometry is modelled using 32 elements with six
elements on each crack surface. The number of elements used on the crack are same as the
number used by Raveendra and Banerjee (1992).

The stress intensity factors are normalized with Er:I.(8 1 -82 )j'W/(1-v) and time is
normalized as Y = Kr/W2

. The results are shown in Figs (7) and (8), as a function of time,
and compare very well with the results from Raveendra and Banerjee (1992) who used a
boundary element analysis.

CONCLUSIONS

The two-dimensional dual boundary element method has been applied to the analysis
of transient thermoelastic problems in cracked structures. A distinct set of equations was
obtained for the two different crack surfaces by applying temperature and displacement
equations when collocating on one crack surface and flux and traction equations when
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Fig. 8. Normalized KII values for inclined crack.

collocating on the other. The body is considered to be in a steady-state condition, before
the transient boundary conditions are applied; this leads to a boundary only formulation.
Time integration of the kernels in temperature, displacement and traction equations is done
by linear time integration. The time integration of kernels in the flux equation must be done
by linear time integration as the errors induced by using constant time integration are
high. The spatial integration is done by using quadratic elements all over the boundary,
discontinuous on the crack and continuous on rest of the boundary. The method presented
allows general two-dimensional, mixed-mode problems to be solved in an efficient and
general single-region formulation. Stress intensity factors over time were calculated using
a j integral technique. The results from rectangular plates with a central crack were
compared with existing finite element results and found to be in good agreement. It has
been demonstrated that the results are accurate and that the dual boundary element method
can be applied to any two-dimensional geometry with transient thermoelastic boundary
conditions.
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Microsystem Analysis and Simulation System (MASS).
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APPENDIX A: FUNDAMENTAL SOLUTIONS

The fundamental solutions of the temperature equation (Brebbia et al., 1984) are expressed in terms of the
following:

A
K =-;

c,

where r = lx' -xl, A is thermal conductivity and c, is specific heat at constant strain. Thus

(A.I)

and

The flux eqn (17) fundamental solutions are written as follows

, . ,ae(X',X,Tp,T) rr.,
e,(X,X,TF,T) =A a,= .,e-'·

x, 8rrK(TF -T)'

(A.2)

(A.3)

(A.4)

The Kelvin fundamental solutions (Brebbia et al. 1984) for the displacement equation are written as follows:

" (I+v)
u,/x ,x) = 4rrE(I-v) [(4v-3)lnrb,,+r.,rJ

-1 { ar }T,,(x',x) =4 (I ) [(I-2v)b,/+2r,r j ]c;--(1-2v)(r,n j -r jn,)][ - v r -' , on . - .

, (I +v)o: [2K - ") r/.knk ._']F,(x,x,T"T) =-4-(-- ~(2r/.knk-n,)(I-e ----e
rr I-v) r~ (TF-r)

, (I + v)o: r, ..,
G,(X,x,TF,r)=2 .(1 )-(l-e)

nc[: -v r

The fundamental solutions (Aliabadi and Rooke, 1991) of the traction equation are written as follows:

(A.S)

(A.6)

(A.7)

(A.8)

(A.9)
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The terms due to the initial temperature and flux in the temperature and flux equations are as follows:

APPENDIX B: TIME INTERPOLATION OF FUNDAMENTAL SOLUTIONS

(A.11)

(A.12)

(A.13)

(A.l4)

(A.I5)

(A.16)

The linear and constant time-integration of the kernels are presented in this Appendix. The following
definitions are used to simplify the equations,

for constant time interpolation

r'
and

r'

for linear time interpolation

[Mhl = I,

[MOl = [Tf~T, T-;~_lJ
The constant and linear time interpolation of the temperature equation gives the following:

for constant

(8.1 )

and

(B.2)

for linear

(8.3)

and
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f"0M h d, =

'/-1

(B.4)

The constant and linear time interpolations of the flux equation gives the following:
for constant

and

for linear

and

(B.5)

(B.6)

(B.7)

f". 0,M h d, =
'(.1

I rr,.
-(F-f)0, ---'-[E,(sr)-E,(St_I)]

87!K'~,
(B.8)

The constant and linear time interpolation of the displacement equation gives the following: for constant

and

(B.9)

for linear

-(F-nf,- (l+v)ccr' [(rr 11 _~)(_(l_-_e-_'f) _c-o_-_e -_"'-,--'»)
.. ' 327!(l-V)K~, ." k 2 57 s7-1

_ . O+v)ccr' [(. ~)(o-e-'f)_(I-e-"'»)
(Ff+ I1/'+32(1 )A r,r,ll k - 2 ' ,

n -v KilT S7 S(_1

and

'. O+v)ccr,r J [((I-e-") o-e-""»)
- (F -.f)g, - 64 (I ) .1 A --,--

1t -v KJ'.uT s; I

(B.II)

f""" G,A1" d, =
. (l+V)iXr,r' [((I-e-") (I-e--,,»)

(F-f+ I)g+ --- - -'-------'-
. '647!(I-v)dM S7 s7_,

(B.12)

The constant and linear time interpolation of the traction equation gives the following: for constant
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and

(B.14)

For linear

and

x{((I ~~-,,) _(I-e-".'))_ (e-.-'! ~ ~.-'!,)}

Sf s1- I Sr Sr- I

(B.15)

_. I. ErJ.r' [( ._~)((I-e-,,)~(I~e-"'))
(F f+ )g'l+ 32n(l-v)dLlr rjl. i 2 S1 S1-J

(B.16)

APPENDIX C: BOUNDED TERMS DUE TO SINGULAR INTEGRALS

Temperature derivative equation
The temperature derivative equation for a boundary point can be obtained by taking the X' point to x' in

eqn (12). But, before taking the internal spatial point to the boundary, time integration should be done. The time
integration for the derivativesc()f E> and Q in eqn (12) is between '0 and 'F' The time range '0-'1' is divided into F
equal time steps and the integration over the last time step can be written as

f {f" aQ } i{f" (,E> }ax; 8(x, ,) de dr and _ ax; q(x, e) dr dr.
r T(F Ii r '(F-I)

By using constant interpolation over time, and noting that as , -> 'F, then

S -> 00

the two integrals can be written as follows:

and

(Cl)
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(C2)

(C4)

(C6)

where r = IX' -xl.
At any smooth boundary point x', a semicircular r:of radius £ can be constructed for a boundary segment

r, as shown in Fig. Cl. When the internal point moves to the boundary point the new boundary for x' is
(r - r,) + rt On a smooth boundary cp varies between 0 and 1I. Continuity requirements of hypersingular and
strongly singular integrals can be seen from the paper by Krishnasamy et al. (1992). The order of singularity of
the equation (Cl) is of 0(1 /r 2

) and of the eqn (C.2) is of O(l/r). The q is assumed to be Co., continuous and 0 to
be C l

•
a continuous. To regularise the integrals, the first term of the Taylor expansion for q and first two terms of

the Taylor expansion for 0 are subtracted.
The eqn (C J) can be written as follows:

}i~ i A;O(x, TF) dr = !~'11 i . .A;O(x, rF) drJr J(r-f) fP

+O(x', TFn~'1I i A; dr + O,(x', TF) !~'11 i A;(xi -x;) dr. (C3)Jr; Jr:
In eqn (C3) the integral of (CI) is divided into four parts. Of the four integrals, the first integral and the third
integral together form the Hadamard principal value integral, the second integral goes to zero as £ -> 0, and the
fourth integral gives a bounded term. The final integral is written as

}i~ i A;IJ(x,TF)df =!i:\? 1 A;O(x,TF)df+Oi(x',TF)!~'1I i .A;(xi-x;) dr.
Jr Jr Jr,:

Similarlyeqn (C2) is as follows:

}i~. fB;q(x, TF) dr = !~'11 Lr'l+r' B;q(x, TF) dr = !~'11 L, B;q(x, TF) dr

+!i:\? i B;{q(x,TF)-q(x',TF)}dr-J.Oi(X',Tr)!i:\? i.B;ni(X)df; (CS)
J~ Jr:

where the relation q = - J.1J,in, is used and ni is left inside the integral as it varies along the circular path. Of the
three terms on the right-hand side of the eqn (CS), the first term is a Cauchy principal value integral and the
second term goes to zero as £ -> O. The third integral gives a bounded term similar to the one in eqn (CA). Then
eqn (CS) can be written as follows:

}i~ i B;q(x, TF) dr = !i:\? fB;q(x, TF) dr - J.1J.,(x', TI)!i:\? i B;n, (x) df.Jl r JI"~

To integrate the two bounded terms along 1,*, the following relations are necessary. They can be seen from
Fig. Cl to be:

r.l = nl = coscp and rl =(XI -X'I) = £coscp

r,=n,=sincp and r,=(x2-x;)=£sincp

r i l1, = I anddr = £dcp. (C7)

r

Fig. CI. Source point on the boundary with semicircular extension.
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and
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After substituting the above relationships in eqns (C4 and C6) the following equalities are obtained

. r F ·1 F Oi(X',TF)
11~ Jr Ai O(x, TF) df = !~ }. Ai O(x, TF) df + --4--

. f F . f F O.;(x', T F )hm Biq(x,TF)df=hm B,q(x,TF)df---
4
--.x --->x (;---+0

r r

(CS)

(C9)

Stress equation
Similarly to the temperature derivative equation, the stress equation also contains integrands of O(l/r') and

O(l/r). By modifying the integration path around the boundary point x' to r,~as shown in Fig. (Cl), the following
can be obtained:

li~. {f. Tki,Uk(X, TF) df - Ie Uki,tk(X, TF) df} = £TkUUk(X, TF) df - £UkUtk(X, TF) df

+Uk./(X',TF) r Tk,,(x,-x;) df-"k'(x', TF) r Ukun,df (C. 10)Jr; Jr,*

where the relation t, = "kin, is used. It can be proven from eqns (C7) that

(Cll)

and

From the eqns (CIO, Cll and C12) the following can be shown

_ "'1(x', T F) _ /l(l + V) 0: , ." /l(l + v)o: 0 x' "
2 (I-2v) O(x ,T,)6,,+ 2(1-v)(l-2v) C ,T,)il ,)'

(CI2)

(C13)


